
International Journal of Applied computer Science (IJACS) Volume 1 Issue I April 2017
www.academicinsights.org email: ijacs@academicinsights.org

1

Automatic Debugging Approaches: A
literature Review.

Geoffrey Mariga Wambugu

gwmariga@yahoo.com; gmariga@mut.ac.ke
Department of Information Technology

Murang’a University of Technology, Murang’a Kenya

Kevin Mwiti Njeru
njerukevin@gmail.com;

Department of Information Technology
Murang’a University of Technology, Murang’a Kenya

Abstract
Fixing failed computer programs involves completing two fundamental debugging tasks: first,
the programmer has to reproduce the failure; second, s/he has to find the failure cause. Software
debugging is the process of locating and correcting erroneous statements in a faulty program as a
result of testing. It is extremely time consuming and very expensive. The term debugging
collectively refers to fault localization, understanding and correction. Automated tools to locate
and correct the erroneous statements in a program can significantly reduce the cost of software
development and improve the overall quality of the software. This paper discusses fault
localization, program slicing and delta debugging techniques. It identifies statistical fault
localization tools such as Tarantula, GZoltar and others such as dbx and Microsoft Visual C++
debugger that provides a snapshot of the program state at various break points along an
execution path. In conclusion we note that most software development companies spend a huge
amount of resources in testing and debugging. A lot more research need to be conducted to fully
automate the debugging process thereby reducing software production cost, time and improve
quality.
Keywords
Automated debugging; Fault localization; Program Slicing; Execution Synthesis

1. Introduction
When a computer program fails, a programmer must debug the program to fix the problem. This
is done by completing two fundamental debugging tasks: first, the programmer has to reproduce
the failure; second, s/he has to find the failure cause. Both tasks can result in a tedious, long-
lasting, and boring work on the one hand, and can be a factor that significantly drives up costs
and risks on the other hand. The field of automated debugging aims to ease the search for failure
causes.

Software defects, commonly known as bugs, present a serious challenge for system reliability
and dependability. Once a program failure is observed, the debugging activities to locate the
defects are typically nontrivial and time consuming. Software debugging is the process of
locating and correcting erroneous statements in a faulty computer program. Debugging a
program consists primarily of stopping your program under certain conditions and then

International Journal of Applied computer Science (IJACS) Volume 1 Issue I April 2017
www.academicinsights.org email: ijacs@academicinsights.org

2

examining the state of the program stack and the values stored in program variables. You stop
execution of your program by setting breakpoints in your program. Breakpoints can be
unconditional, in which case they always stop your program when encountered, or conditional, in
which case they stop your program only if a test condition that you specify is true.

Parnin & Orso (2011) identifies three activities that must be performed when a software failure
occurs. (1) Fault localization which consists of identifying the program statement(s) responsible
for the failure, (2) Fault understanding that involves considering the root cause of the failure and
(3) Fault correction to determine how to modify the code in order to remove such root cause. The
term debugging collectively refers to fault localization, understanding, and correction. According
to He & Gupta (2004), debugging is an expensive and challenging activity requiring
understanding of the program and is often done manually by the programmers. Automated tools
to locate and correct the erroneous statements in a program can significantly reduce the cost of
software development.

Debugging software deployed in the real world is hard, frustrating, and typically requires deep
knowledge of the code (Zamfir, et al 2013). Researchers have therefore invested a considerable
amount of effort in developing automated techniques and tools for supporting various debugging
tasks (Parnin & Orso, 2011). Most existing automated debugging techniques just focus on
selecting a set of suspicious statements that may cause failures and ranking them in terms of
suspiciousness (Lei, et.al 2012). This paper identifies the following tools from literature and
discusses each one of them, giving a state of the art in automated debugging in the conclusion.

2. Fault localization
Fault localization is the activity of identifying the exact locations of program faults (Wong &
Debroy, 2009). It is a very expensive and time consuming process. Its effectiveness depends on
developers’ understanding of the program being debugged, their ability of logical judgment, past
experience in program debugging, and how suspicious code, in terms of its likelihood of
containing faults, is identified and prioritized for an examination of possible fault locations.
Software fault localization is one of the most expensive, tedious and time consuming activities in
program debugging (Wong & Debroy, 2009). Therefore, there is a high demand for automatic
fault localization techniques that can guide programmers to the locations of faults, with minimal
human intervention. Fault localization can be divided into two major phases. The first part is to
use a method to identify suspicious code that may contain program bugs. The second part is for
programmers to actually examine the identified code to decide whether it indeed contains bugs.

Fault localization has been an active area of research, leading to the creation of several tools,
such as Tarantula and GZOLTAR to address the first phase of fault localization. Spectrum-based
Fault Localization (SFL), the technique behind the outlined tools, is a statistical debugging
technique that relies on code coverage information.

Other debugging tools such as dbx and Microsoft VC++ debugger allow users to set break points
along a program execution and examine values of variables as well as internal states at each
break point. These tools provide a snapshot of the program state at various break points along an
execution path. dbx is an interactive, source-level, command-line debugging tool. You can use it
to run a C or C++, program in a controlled manner and to inspect the state of a stopped program.

International Journal of Applied computer Science (IJACS) Volume 1 Issue I April 2017
www.academicinsights.org email: ijacs@academicinsights.org

3

dbx gives you complete control of the dynamic execution of a program, including collecting
performance and memory usage data, monitoring memory access, and detecting memory leaks.
dbx enables you to: Examine a core file from a program that has crashed; Set breakpoints; Step
through your program; Examine the call stack; Evaluate variables and expressions; Use runtime
checking to find memory access problems and memory leaks and Use fix-and-continue to
modify and recompile a source file and continue executing without rebuilding the entire
program. dbx debugger can be used on the command line, graphically through the Oracle Solaris
Studio IDE, or through a separate graphical interface called dbxtool. Microsoft Visual C++ is a
Graphical User Interface (GUI) debugger that allows interactive debugging from within the
Integrated Development Environment (IDE) through the editor window.

One major disadvantage of this approach is that it requires users to develop their own strategies
to avoid examining too much information for nothing. Another significant disadvantage is that it
cannot reduce the search domain by prioritizing code based on the likelihood of containing faults
on a given execution path.

3. Program Slicing
Program slicing is a technique that focuses on those parts of a program that could have
contributed to the failure. This approach yields a subset of the program execution—called
program slice that is relevant for a specific state or behavior. Slices are based on dependencies
between statements: A statement S2 depends on a statement S1, if S1 can influence the program
state accessed by S2. Starting from a statement, the transitive closure over all dependencies
forms a program slice. In debugging, computing the backward slice for a failing statement
returns all statements that could have influenced the failure. An important distinction is made
between static and dynamic slicing. While a static slice applies to all possible runs, and therefore
is computed without making any assumptions about a concrete (failing) program run, a dynamic
slice just applies to the failing run and thus is more precise. An example of program slicing tool
is CodeSurfer which is a commercial tool for performing static slicing on C programs.
CodeSurfer is a code-understanding tool for C and C++ source code. CodeSurfer performs a
deep semantic analysis of a program and provides sophisticated queries for understanding your
code. It enables you to automatically identify and navigate the deep structure of your program:
the semantic threads that reveal exactly how your program works. CodeSurfer can be used either
interactively or programmatically. Another tool is Indus. At present, there are 3 modules that are
part of Indus. (1) Indus is a module that houses the implementation pertaining to algorithms and
data structures common to analyses and transformations that are part of or are planned to be part
of Indus. This module contains interface definition common to most analyses and
transformations to provide a framework in which various implementations of
analyses/transformations can be combined to form systems with ease. (2) StaticAnalyses module
intended to be the collection of static analyses such as object-flow analysis, escape analysis, and
dependence analyses. The analyses in this module use common interfaces and implementations
from Indus and may define/provide new interfaces/implementations specific to new analyses.
Existing analyses are: Object-flow Analysis (OFA) which is a points-to analysis for Java; Escape
Analysis which is an extended implementation of the escape analysis; a collection of dependence
analyses: entry-based control, exit-based control, identifier-based data, reference-based data,
interference, ready, synchronization, and divergence, required by analyses/transformations such
program slicing and partial evaluation; Side-Effect Analysis which provides method-level side-

International Journal of Applied computer Science (IJACS) Volume 1 Issue I April 2017
www.academicinsights.org email: ijacs@academicinsights.org

4

effect information; Monitor Anlaysis is a simple analysis that provides monitor/lock graph
information for the given system; Safe Lock Analysis is an analysis that conservatively discovers
if a lock (monitors) will not be held indefinitely and Atomicity Analysis which provides
information about atomicity in the given system. (3) Java Program Slicer module contains the
core implementation of Java program slicer along with adapters that deliver the slicer in other
applications such as Bandera and Eclipse.

4. Delta debugging
Each bug in the database describes complex scenarios which cause software to fail. They may
contain a lot of irrelevant information therefore a great deal of the bug reports could be
equivalent. Delta debugging is an automated technique which takes a test case that causes a bug
and turns the bug reports into minimal test cases where every part of the input would be
significant in reproducing the failure thereby producing simplified bug reports (Zeller &
Hildebrandt, 2000). It is usually hard to figure out what the real cause of the failure is by just
inspecting an output file. Simplifying the input file and still generate the same failure would be
very helpful in finding the error. Delta debugging technique automates this approach of repeated
trials for reducing the input. To describe the algorithm we first need to define the process.

In general the delta debugging technique deals with circumstances whose change may cause a
different program behavior. These changeable circumstances refers to all the possible behaviors
of the program and its environment. Other applications of Delta debugging is in finding failure
inducing code changes in programs. Given two versions of a program such that one works
correctly and the other one fails, delta debugging algorithm can be used to look for changes
which are responsible for introducing the failure. Choi & Zeller, 2002 notes that delta debugging
can also be applied in isolating failure inducing thread schedules. Given a thread schedule for
which a concurrent program works and another for which the program fails, delta debugging
algorithm can narrow down the differences between two thread schedules and find the locations
where a thread switch causes the program to fail.

5. Execution Synthesis
According to Zamfir, & Candea, 2010, debugging real systems is hard, requires deep knowledge
of the code, and is time-consuming. Bug reports rarely provide sufficient information, thus
developers are forced to search for an explanation of how the program could have arrived at the
reported failure point. Execution synthesis is a technique for automating this investigative work:
given a program and a bug report, it automatically produces an execution of the program that
leads to the reported bug symptoms. Using a combination of static analysis and symbolic
execution, it “synthesizes” a thread schedule and various required program inputs that cause the
bug to manifest. The synthesized execution can be played back deterministically in a regular
debugger, like GDB which is the GNU DeBugger. It is used to debug code that has been
compiled by GCC (the GNU Compiler Collection). It’s a very powerful debugger that allows
you to debug even the most sophisticated of software. This is particularly useful in debugging
concurrency bugs. Our technique requires no runtime tracing or program modifications, thus
incurring no runtime overhead and being practical for use in production systems. We evaluate
ESD — a debugger based on execution synthesis—on popular software (e.g.,the SQLite
database, ghttpdWeb server, HawkNL network library, UNIX utilities): starting from mere bug

International Journal of Applied computer Science (IJACS) Volume 1 Issue I April 2017
www.academicinsights.org email: ijacs@academicinsights.org

5

re-ports, ESD reproduces on its own several real concurrency and memory safety bugs in less
than three minutes.

6. Conclusion
This paper identifies debugging as tedious, time consuming, boring and very expensive. It notes
that despite all efforts and the scientific progress made, modern software still contains bugs that
not only cause pure inconveniences, but also have a negative impact on the economy. Thus, we
still need techniques that help us debug software systems. Both debugging techniques of
reproducing the failure and finding the defect can be a tough and risky challenge. Automated
debugging aims to ease the search for failure causes. Most software development companies
spend a huge amount of resources in testing and debugging. A lot more research need to be
conducted to fully automate the debugging process thereby reducing software production cost,
time and improve quality.

References
Brummayer, R. Lonsing, F. & Biere A. 2010, ‘Theory and Applications of Satisfiability Testing

SAT 2010’ Proceedings 13th International Conference, SAT 2010 Edinburgh, UK, July 11-14,
2010

Choi, J.D. & Zeller, A. 2002, ‘Isolating Failure-Inducing Thread Schedules.’ Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA 2002), July 2002

He, H. & Gupta, N. 2004, Automated Debugging Using Path-Based Weakest Preconditions
Lei,Y. Wang, C Mao, X & Wu, Q 2012, ‘ Enhancing Contexts for Automated Debugging

Techniques’, Proceedings of the Seventh International Conference on Software Engineering
Advances

Bandara, M.L. 2002, ‘A guide to GDB’, available at < http://www.lashi.org/
writing/guide_to_gdb_1.1.pdf> accessed on 28th November 2014

Parnin, C. Orso, A. 2011, ‘Are Automated Debugging Techniques Actually Helping
Programmers?’ ACM 978-1-4503-0562

Wong, W.E. & Debroy, V. 2009, ‘A Survey of Software Fault Localization’, Technical Report
UTDCS-45-09 < Available at http://www.utdallas.edu/~ewong/fault-localization-survey.pdf
accessed on 19th Nov. 2014 >

Zamfir, C. & Candea, G. 2010, ‘Execution Synthesis: A Technique for Automated Software
Debugging’ ACM 978-1-60558-577-2/10/0

Zamfir, C. Kasikci, B. Kinder, J. Edouard Bugnion, E. & Candea, G. 2013 ‘Automated
Debugging for Arbitrarily Long Executions’, Proceedings of 14th Workshop on Hot Topics in
Operating Systems (HotOS), Santa Ana Pueblo, NM, May 2013.

Zeller, A. & Hildebrandt, R. 2000, ‘Simplifying and Isolating Failure-Inducing Input’, IEEE
Transactions on Software Engineering 28(2), February 2002, pp. 183-200.

< http://www.grammatech.com/research/technologies/codesurfer Accessed on 30th Nov. 2014>
< http://indus.projects.cis.ksu.edu/ Accessed on 30th Nov. 2014>

